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Abstract 

It has been claimed that vibration damping can be derived from the coupling of a 

continuous distribution of undamped oscillators. This claim stems from the fact that the 

contribution to the damping of a master oscillator by a coupled set of continuously distributed 

satellite oscillators, is independent of the loss factors of the oscillators in this set. (The 

distribution is with respect to the frequency of resonance of the satellite oscillators in the set.) 

The transition from a discrete-to-a continuous distribution, however, cannot be achieved without 

the imposition of modal overlap on the distribution of the satellite oscillators. It is this 

imposition that ensures that the contribution to the damping by these satellite oscillators is 

intuitively real. The imposition forbids equating the loss factors of the satellite oscillators to zero 

just because their contribution, to the surrogate damping of the host master oscillator to which 

they are coupled, is independent of these loss factors. Notwithstanding that the quantification of 

this contributed damping in terms of a dimensionless ratio of dynamic quantities does not 

uniquely qualify it as a loss factor. Moreover, the analysis of nearly continuous distribution of 

nearly undamped satellite oscillators brings insights into the manner by which they contribute 

damping to the mechanical system of which they are an integral part. In part, these insights are 

obscured in an analysis that is based on the a priori introduction of extreme limits. Indeed, these 

insights may be the overwhelming justification for the present paper. 



Introduction 

Central to the present paper is a recent publication entitled "Vibration damping by a 

continuous distribution of undamped oscillators" by R.J. Nagem, I. Veljkovic and S. Sandri [1]. 

It is argued in this publication that damping is provided to a host master oscillator by a set of 

oscillators that are a priori devoid of damping [1]. Although these arguments are well taken and 

are well presented, the idea that damping can be provided by lossless oscillators is contrary to 

intuition and needs careful consideration. Cavalierly stating that "the set of continuously 

distributed oscillators considered here may also be interpreted as a 'heat reservoir'..." is hardly 

an adequate consideration. Neither is the argument adequate that the idea and similar 

interpretive schemes are not new; they had been advanced in a number of preceding publications 

[2-4]. Nonetheless, the present paper is not seeking to challenge the notion that the damping, 

that is provided to the master oscillator by a distribution of these lossless oscillators, violates 

somehow the balance of power, i.e., the law of conservation of energy. (In the present analysis 

the question: "Where did the energy go?" does not arise; the question is rendered moot by 

asymptotically evaluated dynamic quantities when parametric limits are extremely reached for.) 

Rather, a fundamental initial oversight that beset all these publications is brought to the attention 

of the reader. Admittedly, once that oversight is addressed, the remaining analyses and 

arguments in all these publications are largely validated; e.g., validated is the argument that a 

specifically defined measure of the damping that is provided to the host master oscillator by a 

distribution of nearly lossless oscillators, is independent of the loss factors that account for the 

dampings in these oscillators. This independence does not, however, imply that individual loss 

factors that are equal to zero are admissible; indeed, individual loss factors that are not equal to 

zero are an essential condition on the validity of the analysis in the first place. Moreover, the 

analysis of nearly continuous distribution of nearly undamped satellite oscillators brings insights 

into the manner by which the satellite oscillators contribute damping to the mechanical system 

comprising a hosting master oscillator and these satellite oscillators. Thus, in the asymptotic 

evaluations of the balance of power, power is preserved. As the loss factors of the individual 



satellite oscillators are made to approach zero, the relative stored energy in these oscillators is 

increased proportionately so that this relative stored energy approaches infinity. The dissipated 

power in the satellite oscillators, relative to the external input power into the mechanical system, 

therefore remains unchanged. This, for example, explains why the damping, of the master 

oscillator due to the presence of the satellite oscillators, is independent of their assigned loss 

factors. In part, these insights are obscured in an analysis that is subjected a priori to limiting 

asymptotic conditions of continuity and distribution; notwithstanding that such impositions may 

require careful consideration if apparent singular behaviors of the mechanical system are to be 

avoided. 



I. Transition for a discrete-to-a continuous distribution 

Consider the mechanical system comprising a master oscillator, with mass (M) and 

stiffness (K), that is coupled to a set of satellite oscillators. This mechanical system is sketched 

in Fig. 1 [1-4]. The (n)th satellite oscillator is defined by a mass (mn) and a stiffness (kn). 

The damping is assumed to be associated with the stiffness elements 

K =  K0(l + ir]0) ; (K0/M) = (02
0 , (la) 

kn   =   kon(l + i7ln) ^ (Kn''mn)   =   ®n  > (lb) 

where (J\0) and {r\n) are loss factors. Each of these loss factors characterizes an individual 

oscillator and quantifies the dissipation that the oscillator, in isolation, can handle when 

externally driven. The linear equations of motion of the master oscillator in situ and a typical 

satellite oscillator in situ are 

[(io)M) + (K/ico)]V0(o)) + l(kn/ico)[V0(co)-Vn(co)] = Pe(co) , (2) 
l 

(icomn) Vn{(0) + {knlico) [Vn(co) - V0(co)] = 0 , (3) 

respectively, where V0 (CO) and Vn (CO) are the response of the master oscillator and the (n)th 

satellite oscillator, respectively, and Pe(co) is the drive that is assumed applied externally to the 

master oscillator; the satellite oscillators are not driven externally [1-4]. [cf. Fig. 1.] The 

summation in Eq. (2) is over a set of satellite oscillators; (JV) is the number of satellite 

oscillators in the set. In the publications of reference, a transition is performed or implied from 

N fi the summation (X' * 0, accounting for a discrete distribution, to the integration ()0d^---), 
l 



accounting for an imposition of a continuous distribution [1,5,6]. To validate this transition, a 

condition must be imposed. To establish this condition a modal density is defined in the form 

(kon/mn) = 0)2n ; Z4i->£<*&!(£) ; 0<£<1 , (4a) 
l 

[k0(&/m(&\ = co2(0 ; n(§) = (N) [daK&tdQT1 ■ (4b) 

The modal density n(%) of a set of satellite oscillators is a function of the dimensionless and 

continuous variable (£), which has values in the interval between zero and unity [1]. The 

transition from the discrete-to-the continuous is necessarily valid if a modal overlap prevails [7]. 

A modal overlap prevails provided 

n(£)fi>7j(£fi>) > 1 ; 7fo(fi>) -> riß, a) . (5) 

Therefore, the transition stated in Eq. (4a) is validated by the condition 

rfäa» >{con^)Yl ;      [NJ]^,(O)] > [doo&/(ood%)] , (6a) 

where Eq. (4b) is substituted in Eq. (5). (A recent investigation, under Reference 8, reveals that 

if the introduction of a set of satellite oscillators is intended to achieve viable noise control 

benefits, then an optimal modal overlap condition requires that [n(co) CO r\(%, CO)] - (b) or 

equivalent^ that [Nri(^,C0)] z (b)[dco(%)/(cod^)]~\ with (b) -(312) and (N) large; e.g., 

iV = 10. An exaggerated inequality in Eq. (6a); e.g., (b) = (8), may lead to an erosion in 

the noise control viability of the set. However, in the investigation under Reference 8, (N) is 

numerable; i.e., N < 20, whereas in the present investigation (N) is considered to be 



innumerable; i.e., N > 20. Therefore, in the present paper erosion is not a problem even if the 

overlap factor (b) is somewhat exaggerated [8].) It follows from Eqs. (4)-(6) that 

[MK£fl>)] > [d{k0G)/m(g)}mK(DdQi\ . (6b) 

Thus, in general, T](^, CO) cannot be set a priori equal to zero. Unless Eq. (5) holds, the 

transition from the discrete-to-the continuum, which is central to References 1-4, becomes 

invalid, notwithstanding that in the limit "of a large number of discrete secondary oscillators" the 

admissible loss factors may be quite small since (TV), in Eq. (6), may be quite large [1,8]. (Note 

that a secondary oscillator = a satellite oscillator.) Equation (6), in terms of Eqs. (13) and (14) of 

Reference 1, may be stated in the form 

[MK&o»] >{(o0lco) (l-£)"2 ; 0<£<1 , (7) 

where, again, (N) is the number of satellite oscillators and (C0o) is defined in Eq. (1). 

Equations (6) and (7) emphasize that the smallness of the loss factors rj(%, CO) cannot be 

arbitrarily assigned; in particular, merely assigning 7](%, CO) to be zero is not optional. 



II.   Independence of the contribution to the damping of a master oscillator from the loss factors 

of coupled satellite oscillators 

Employing Eq. (4a), Eq. (2), with the use of Eq. (3), may be cast in the form 

icoM{[l-(co0/co)2 (1 + iTfc,)] + £</£«(# {l + m&co)} 

• [{l + ifK£fl»} - {ffl/ffl®}2]-1}   V0(co) = Pe{co) , (8) 

where m (|)  = [w(|)/M] [1]. Multiplying both sides of Eq. (8) by Vo(C0), the complex 

conjugate of V0 (0)), and taking the real part of the resulting equation one obtains 

Ue(co) = [coEok(co)] [2((0o Ico)2 ][ri0 + 7]s(©)]     , (9a) 

where E0^ (CO) is the stored kinetic energy in the master oscillator in situ 

Eok(CO) = (l/2)M\Vo(C0)\2 , (10a) 

rig (CO) is the external input power into the master oscillator in situ 

Ue(co) = Re{Pe(co)V*(co)} , (11) 

and, finally, 7]s(co) is a measure of the contribution to the damping of the master oscillator by 

the satellite oscillators 

77,(0» = (co0lcof \l0d&n£) [{(0(0/co}277(6©)] 

• {[{co(i;)lco}2-lf + [{co(£)/co}2Ti(Z,co)]2} "] . (12a) 



It is emphasized that 7]s{(0) is defined in the mold of the loss factor (r\0) of the master 

oscillator in isolation. In that sense r\s{(ö) is a measure of the contribution to the loss factor of 

the master oscillator by the presence of the satellite oscillators in the mechanical system in which 

they are incorporated, [cf. Fig. 1.] A real external input power into a mechanical system 

requires real damping to exist in that mechanical system; the higher is this damping the higher is 

the potential injection of power by an external drive. Since only the master oscillator is 

externally driven, Tle(0)) is identical to the external power into the mechanical system. 

Equation (9a) indicates that He(co) comprises of two parts 

Ue(co) = Ueo(co) + Ues((D) ;    Ueo((o) = [0)Eok((o)] [2(co01(0)
2
]T]O ; 

Ues(o)) = [0)Eok(o))] [2(co0/co)2]ris(co) , (9b) 

where lleo((0) is the external input power into the mechanical system due to the inherent 

damping in the master oscillator and Ues(co) due to the additional damping provided by the 

satellite oscillators in situ. It transpires, therefore, that the ratio £s(co) of the external input 

power that is imparted to the master oscillator due to the presence of the satellite oscillators; i.e., 

the component Ues((0), and the total external input power Yle((0), is given by 

£s(co) = [Ues((0)/Ue(Q))] = r\s{(o)[r]0+r)s(co)Tl  = molr]s<fi»} + Vrl -(9c) 

The external input power ratio £s{(0) is depicted, as a function of [r]0/ris(co)], in Fig. 2. To 

determine the contribution to the real damping of the mechanical system by the satellite 

oscillators and hence determine £s(co), Tjs(co) needs to be evaluated employing Eq. (12a). To 



facilitate this evaluation it is useful to render unto this equation a transformation of a variable in 

the manner 

g^)d{co^)/o)} = d$;      *($ = [{a»®/(öj/agr1 • (i3) 

Applying this tranformation of a variable to Eq. (6a) and Eq. (12a) one obtains 

[Nri(x,a))] > [g(x)Tl ; *(£) = W£)l<o} , (6c) 

rjs(co) = (co/(o0)
2 J~ ^{[m(x)g(x)][>;277(*,&>)] 

• {[x1-if+[x1T]{x,(o)frl , (12b) 

respectively, and it is recognized, once again, that the validity of Eq. (12b) is predicated on "the 

discrete-to-the continuum" condition stated in Eq. (6c). Provided the factor [m(x)g(x)] in the 

integrand is well behaved function of (x) and (co), the integral in Eq. (12b) may be readily 

executed to yield the result. 

77,(0?) = (nl2)((ölco0f [m(Z0)g(Z0)] ; x£0) = {co(i;0)lco} = 1 .     (12c) 

Of course, as just discussed, the dimensionless ratio 7^ (<X>) is a victim of its definition. It is the 

desire to put T\s((0) on the same footing with (770) that prompted its definition in terms of the 

stored kinetic energy E0^ (ft)) in the master oscillator in situ. In the quantification and division 

of the external input power Tle(co), this definition makes sense, [cf. Eq. (9).] As to whether 

77s(0)) qualifies as a loss factor remains to be resolved. Equation (12c) clearly states that 

rjs(co) is independent of T](^, co) [8]. Since r\s{(ö) is independent of the individual loss factors 



of the satellite oscillators, £s(co), too is independent of these individual loss factors. However, 

Eq. (6) states that this independence cannot be interpreted to mean that 7](^, (O) may be set 

a priori equal to zero; indeed, to validate this independence, [NT](^, 0))] must remain finite. 

At this stage it may be merely remarked that in Reference 1, the loss factor (r]0) of the 

master oscillator in isolation is set a priori equal to zero and, therefore, the external input power 

ratio £s(co) is set a priori equal to unity. In this case the external input power Ue(co) is 

entirely due to the presence of the satellite oscillators; they alone provide a real damping to the 

externally driven mechanical system and they alone enable the mechanical system to receive 

input power from this external drive. 

Again, there may be interest in casting Eqs. (6c) and (12c) in terms of Eqs.' (13) and (14) 

of Reference 1. It is first observed that in terms of these referenced equations and the second of 

Eq. (12c), one derives 

&= [\ + {co0l(o)YX ; (!-&)= (fö0
/6,> [l + ^/ö)]"1 , (14a) 

feO"1   =   [(C00ICO)ll2+((ül(00j
U2f , (14b) 

m(§0)  =  ll[\ + (C00l(ö)f[\ + (Cü0l(0)2Yl    ■ (14c) 

Substituting Eq. (14) in Eqs. (6c) and (12c) one obtains 

[Ntäo,(0) > [(co/co0)
y2+(co/o)0)

U2f . (6d) 

Tfc(fl>) = (/ür/2)(©/ö>0) [\ + {(ol(o0)
2Yx ;     {G)(&)/fl>} = 1 , (12d) 

10 



respectively, and in particular setting {col(00) equal to unity, one obtains 

[Nn(^0,(00) > 4 ; Ti&.tDo) > (4/AO , (6e) 

r\5{ß0) = {ßKlA) . (12e) 

In this particular case, the external input power ratio £s(0)) becomes 

£,(<»*) = [(4T?0/^U)+ I]"1 , (9d) 

indicating immediately that a massless satellite oscillators, for which fi = 0, do not contribute 

to the external input power into the mechanical system, unless the loss factor (7]0) of the master 

oscillator, in isolation, is set a priori equal to zero!(?). A question may then arise: which of the 
1/9 

two zeros is the more zero! ([sin(;y)/jc] as y —»  0 and x —>  0 ; y = (x)    , (x) and 

(x)2l) The consequence of imposing extreme limits a priori is, thereby, illustrated, in this 

particular case, as an example. 

11 



III.    Stored energies in the master oscillators in situ and in the satellite oscillators in situ 

The stored kinetic energy Eok (CO) in the master oscillator in situ is stated in Eq. (10a). 

In the same vein, the energy E0{C0) stored in the master oscillator in situ may be expressed in 

the form 

E0(co) = Eok(co)[l + (co0/co)2] . (10b) 

Further yet, the energy E(a>) stored in the mechanical system, comprising the master oscillator 

and the coupled satellite oscillators, may be expressed in the form 

E(co) = E0(co) + Es(co) ; Es(co) = E0(co)Ss(co) , (10c) 

where Es(co) is the stored energy in the satellite oscillators in situ and 

[Es(co)/E0(co)] = Ss(co) = [l + (l/2)7]2(6))] [T]fs{(0)lr]{(0)\ ; 

T]^0,co) = 77(G)) ; {G)(£0)/G)) = 1 , (15a) 

7]'s{CO) = 2(co0/co)2 [l + (co0/co)2rl lVs(co)] . (15b) 

[Equation (15) is derived by stating the partial stored energy Es(%, CO) in the satellite oscillators 

and performing the integral involved in a manner analogeous to that performed with respect to 

Eq. (12) [1].] The parameters 7]s(co) and 7](|, CO), in Eq. (15), are defined by Eq. (12) and the 

inequality in Eq. (6), respectively. It is recalled that T}s(co), and, therefore, also 7]'s{co), are 

largely independent of 77(|, ft)). Thus, provided 77(G)) [= T7(£0,G))] is small compared with 

unity; 7] (CO)  « (1 / 2), the ratio 3S (CO), of the stored energies in the satellite oscillators 

in situ and in the master oscillator, is inversely proportional to [77(G))/ 77^(ft))]. This situation is 

12 



depicted in Fig. 3. Clearly, as the satellite oscillators become more and more lossless, i.e., as 

[77(6))/T)'s(co)] approaches zero, the stored energy ratio Ss(co) increases toward infinity. (This 

situation, in the appropriate limits, tends to conform with the specific singular finding reported in 

Reference 1.) Thus, it emerges that whereas the ratio of the external input power £s((0), 

defined in Eq. (9c), remains unchanged with changes in the individual loss factor T](^0, (O), the 

corresponding stored energy ratio Zs {(O) changes inversely to changes in this individual loss 

factor. What is the significance of this dependence and how is it to be interpreted within the 

context of dissipation in the mechanical system depicted in Fig. 1? 

13 



IV.   Dissipated power in the master oscillator and in the satellite oscillators in situ 

The external input power component Ueo(co), defined in Eq. (9b), is identified with the 

dissipated power in the master oscillator. In terms of the stored energy E0(co) in the master 

oscillator, the power Tleo(co) dissipated in that master oscillator may be cast in the form 

Yleo((o) = (D7)'0{(ö)E0((ö);   r\'0((ö) = (2T]0)(co0lco)2 [l + (co0/G))2]'1  ■    (16a) 

Similarly, the external input power component Tles(co), defined in Eq. (9b), is identified with 

the dissipated power in the satellite oscillators. In terms of the stored energy Es (6)) in the 

satellite oscillators, the power JJes(0)) dissipated in these oscillators may be cast in the form 

nes(cQ) = CQTI(CO)ES((O) ; ri(£0,(o) = 77(G)) . (16b) 

and, of course, by definition 

Ueo(co) + Ues((D) = Ue(co) . (16c) 

2 
Assuming once again that 77(6)) is small compared with unity; 77 (G))  « (1 / 2), one may 

establish, from Eqs. (9c), (15) and (16) the following relationships: 

£,(ü)) = [77(ö))3,(6))] [nf
0{co) + n{co)Zs{(o)Tl =r]fs{(o)W0{(o) + n's((o)Tl , (17a) 

35(ö)) = [7?;(ö))/77(a))]£,(ö))[l-£,(ö))]-1 =Ws{co)l7)(co)} . (17b) 

As previously stated, r\s{(0) and also T]'s{(0), are independent of 77(6)). It follows that the 

dissipated power ratio £s(co) is also independent of 77(G)); the ratio £s(co) between the power 

Ues((0) dissipated in the satellite oscillators in situ and the power Ue(0)) dissipated in the 

14 



mechanical system is independent of the individual loss factors of the satellite oscillators in 

isolation, [cf. Fig. 2.] One is reminded that Tle ((D) is also the external input power into the 

mechanical system as a whole. One the other hand, the stored energy ratio 3s(co) between the 

stored energy Es(CO), in the satellite oscillators in situ, and the stored energy E0((0), in the 

master oscillator in situ, is inversely proportional to T]((0); indeed, Ss(co) increases as 

[77(6))/rj's(0))] decreases, [cf. Fig. 3.] As Eq. (17) indicates this relationship between 3S(G>) 

and [77(6))/ T]s(0))] maintains unchanged the dissipated power ratio £s(Cd). Thus, £s(co) 

remains unchanged with respect to changes in [77(6))I 7]s((0)], but may change, with changes in 

\Xlo I Is (®)]= Wo C®) I rfs (®)]- [cf- FiS- 2-3 Indeed, to maintain £s (CO) unchanged with 

respect to changes in [t]((ö) 1T]'s (ö))], these changes must be inversely compensated by changes 

in the stored energy ratio 3^(6)). Moreover, the conservation of energy is built into the analysis 

here presented. The question as to "where did the energy go" is moot in this analysis. The 

dilemma that has beset the interpretation presented in References 1-4 is, thereby, resolved and is 

rendered consistent with intuition; intuition wins again! The singularity, that beset the stored 

energy ratio 3s(ö)) in [rj(co)/ 77^(6))], has caused confusion. The singularity in 3^(6)) exists 

in the analysis when it is imposed a priori that [r](co) I T]s ((O)] is identically equal to zero. In the 

analysis presented in this paper the asymptotic behaviors of the mechanical system may be 

investigated when the appropriate limits are approached. This is in contrast to the analyses 

presented in References 1-4 in which a number of key limits were a priori imposed. Among 

these key limits is the implication that [N 77(0))] may assume the value of zero. This implication 

defies the condition of modal overlap, [cf. Eq. (6).] 

To briefly recapitulate: if the master oscillator is lossless, so that 770 —»  0, 

£s(co) —>  1 indicating that the dissipation is exclusively occurring in the satellite oscillators. 

Moreover, this exclusiveness is independent of the individual loss factors t]((0) of these 

oscillators. Thus, even if 7](co) approaches zero; 7]((0) —>  0, the dissipation in the mechanical 

system is exclusively confined to the satellite oscillators in situ. This situation is maintained 

because the stored energy ratio 3^(6)) increases inversely to 77(0)) so that as T]((0) approaches 

15 



zero, the stored energy E{(0) in the mechanical system resides exclusively in the satellite 

oscillators; the stored energy E0 {(0) in the master oscillator pails in comparison with the stored 

energy Es (CO) in the satellite oscillators. The increase in 3s (CO) just compensates for the 

decrease in T\((ö) so that £s(co) can be maintained at unity. Although the limits are approached 

smoothly in terms of £s(co) and 3s(co), the singularity in 3s(co), as T](co) —>  0, may cause 

analytical discomfort; e.g., is 77(6))  —>  0 beyond the value of 7]0 ?; i.e., what are the values of 

[l]01 77(6))] when 77(a))  —>  0 ? In answering questions of this ilk one is reminded that 

overriding these questions is the imposition of the condition of modal overlap in which 

[N 77(6))] must remain finite. Without this imposition of modal overlap the analysis cannot 

proceed from the discrete-to-the continuum which is a basic tenet of the analysis. 

A Note: It may come to pass that the imposition of modal overlap is, if (N) is taken 

large enough, imposed naturally in computer experimental data. This process may be 

commensurate with that of trying to construct a mechanical system, of the vintage depicted in 

Fig. 1, with oscillators that are well nigh lossless. Moreover, several papers have attempted to 

cast the analysis in the temporal (t) domain rather than in the frequency (6)) domain [1,4]. Of 

course, the analysis in these two different domains can be related by a Fourier transformation. In 

terms of today's computers, this transformation is easily implemented. However, the author, 

being computer illiterate, leaves the implementation of the transformation of the analysis, 

presented herein, into the temporal (?) domain as an exercise to those who are computer literate. 

The implementation is not an idle exercise; the author is fully aware of the complemental 

descriptions of the behavior of the mechanical system in the two domains. This complementarity 

is highly beneficial to the interpretation of this behavior. 
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V.     Loss factors and other dimensionless ratios of dynamic quantities 

"All loss factors are useful noise control parameters, but not all dimensionless ratios of 

dynamic quantities are loss factors; notwithstanding that some such dimensionless ratios may 

serve as useful indicators of noise control goals and achievements." 

It has been commonly assumed that a loss factor 7](cö) may be defined in terms of the 

ratio of the external input power He((0) and the product of the frequency (6)) and the stored 

energy E(c6) that this input power generates; namely 

ri(co) = Ue(co) {coE(Q))}-1  . (18) 

Analogeous to Eq. (18), one may employ Eqs. (9) and (10a) to define the dimensionless ratio 

Wok C0*) m tne form 

r\ok{(D) = [Ue(co)/{coEok(co)}] = 2((D0/co)2 [T]0+T}S(CO)\ . (19a) 

In the same vein, Eqs. (9a), (10b) and (10c) may be employed to define two more dimensionless 

ratios; namely 

77r(ö)) = [Ue(co)/{coE0(co)}] = r]ok{G>) [\ + {(0ol(0)2Yx , (19b) 

77,(6))   = [Yle(0))/{COE(CO)}]   =   77,(6)) [l + S^Ö))]"1  , (19c) 

where 3^(6)) is stated in Eq. (15) [9,10]. It is established that 77,(6)) may be cast in the form 

[11] 

rim = W0 (CO) + {77(6))3,(6))}] , (20a) 
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where T\'0((0) and T]{co) are stated in Eqs. (16a) and (16b), respectively [11]. Therefore, from 

Eqs. (19c) and (20a), one obtains 

leia» = KM + {77(0)3,(0»}] [1 + 3,«»)]-1 . (20b) 

In Eq. (20), Tl'0 (CO) at resonance, where (C00 I (0) =  1, is identified with the loss factor (j]0) 

of the master oscillator in isolation and r\((d) is identified with the loss factor of the satellite 

oscillators in isolation and in the distributed placement defined by £ =  %0. [cf. Eq. (12d) for 

the definition of %0.] The parameter 7]0£ (CO), in principle, relegates the measure of damping 

introduced by the satellite oscillators to the loss factor (r]0) of the master oscillator; i.e., the 

parameter Tjs(G)) equivalently relates, on behalf of the satellite oscillators in situ, to the external 

input power into the master oscillator. Although 7^ (co) is a useful parameter, its surrogate 

nature does not quality it to be a loss factor, rendering r\0^ {(0) also disqualified for this 

designation. Similarly, the parameter Tjt(co), in principle, relegates the measure of the damping 

introduced by the satellite oscillators to the loss factor Tl'o(C0) of the master oscillator; i.e., the 

parameter {77(6))3,(6))} equivalently relates, on behalf of the satellite oscillators in situ, to the 

external input power into the master oscillators. (The loss factor T]'0 {(O) is equal at resonance, 

where {C0ol (O)  =  1, to the loss factor (rj0 ), both are in reference to the master oscillator in 

isolation.) The parameter T\t((0) harbors, again, a surrogate term; i.e., {77(6))3s{(0)}, and, 

therefore, it, too does not qualify to be a loss factor. Finally, [C0T]e (ö))] describes the ratio of the 

external input power He(co) into the mechanical system to the entire stored energy E((o) that 

this input power generates in the mechanical system. As such T\e((d) qualifies to be a bonafide 

loss factor. 
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In a final note one may attempt to address the following problem: 

A mechanical system, comprising a master oscillator, is externally driven. The 

relationship between the external input power Yl°e (co) and the stored energy E%(CO) generated 

in the master oscillator may be expressed in the form 

n°(co) = ayri'0{(o)E°0{(o) ; U°e(co) = G°(co)Sf(co)A(co) , (21a) 

where G°(CO) is the conductance of the master oscillator in isolation, Sf(co) is the spectral 

density of the external drive, and A(co) is a suitable frequency band [7]. The superscript (o) 

designates quantities and parameters that pertain to the uncoupled master oscillator. On the other 

hand, if the mechanical system is extended to include the satellite oscillators, the relationship 

between the external input power Ue(co) and the stored energy Eo(C0) generated in the master 

oscillator is expressed in Eq. (19b); namely 

Ue(co) = arit(co)E0(co) ; Ue(co) = G(co)Sf(co)A(co) , (21b) 

where G((0) is the conductance of the extended mechanical system (master oscillator + satellite 

oscillators) and Sf(CO) and A(a>) are identical to those stated in Eq. (21a) [7]. A noise control 

goal may address minimizing the response of the master oscillator by the extension just 

proposed. This minimization may be expressed in terms of a reduction in the ratio 

[E0 (Q))/E% (CO)]. From Eqs. (21 a) and (2lb) one obtains 

[Eo{(0)IE0
0(C0)\ = [Ue(0))/Tloe(C0)] [iTom/T]^)] , (22a) 

where 

[Tle(0))/Iloe(C0)] =  G((0)IG0((0) . (23a) 
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Employing Eqs. (17b) and (20a), Eq. (22a) may be cast in the form 

[E0{co)IE°0{(o)\ = [Ue(co)/U°e(co)] (Tfc) [rio+^ico)]-1 . (22b) 

Often one tends to argue that the external input power ratio \Yle((ü)IY\°e (co)] is largely equal to 

unity [11,12]. Under this argument, Eq. (22b) reduces to read 

[E0((0)IE°0((0)\   = [7fc(0)/7j,(fl»]  « (n0) [rio+TJsiO))]-1 , (24a) 

where rj'o(0)) and T7f (ö>) are stated in Eqs. (16a) and (19b), respectively. Then, if 

Vo <<: 77,y(6))>me reduction in the vibrational stored energy in the master oscillator is 

significant, [cf. Eq. 2.] This reduction may be quoted as the benefit that may be accrued by 

coupling, to the master oscillator, a set of satellite oscillators; especially if that set yields a value 

for [f]0 17]s (co)] that is small compared with unity. Then the reduction attained is given by 

[E0(CO)IE°0{CD)\    -[T]o/T]s((0)]   «   1   . (24b) 

Claims of significant reductions, commensurate with those stated in Eq. (24), have been made 

[2,3]. However, since TJt(co) is not a true loss factor, the result stated in Eq. (24) may be 

suspect; only a true loss factor definitively describes a property of the mechanical system. 

Indeed, an examination of the external input power ratio [Yle (Ct)) I H°e (0))] reveals that a value 

of unity for this ratio may not be a viable approximation. Indeed, it was discussed, with respect 

to Eq. (12c), that the presence of the satellite oscillators may contribute to an increase in the 

external input power; the increase is associated with a real increase in the damping of the 

externally driven master oscillator. The measure of the increase is from (T]0) in isolation to 

[rf0 + 7]s (co)] when the master oscillator is coupled to the set of satellite oscillators. 
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[cf. Eq. (9a).] A statistical energy analysis (SEA) estimate, via Eq. (23a), the external input 

power ratio to be 

[G(U))/G°(<D)]~[1 + ZS(CO)] [l + KM./M^»}]-1 ;      £»<1 ,      (23b) 

where Ms is the total mass in the satellite oscillators and £>s0((0) is the modal coupling strength 

between the satellite oscillators and the host master oscillator [12]. (In this context, 3S(C0) is 

the corresponding global coupling strength [12].) Substituting Eq. (23b) in Eq. (22a) yields 

[E0{(o)IE°0{co)] « [ifc(a»/ffe(a»] [\ + (MsIM)l;s0{G»}Yl , (22c) 

where Tl'0(G)) and Tje(co) are stated in Eqs. (16a) and (19c), respectively. In this connection, 

except for a few extreme cases, designing a massive set of satellite oscillators, for which 

(My / M) > (1 / 3), in order to beneficially decrease the second factor on the right of Eq. (22c), 

is considered a bad noise control proposal. (A tale of a tail that wags the dog!) Equation (22c) 

may then be approximated to read 

[E0{co)IE°0(co)\ r[£0(ö)/^(«)]1 [l + 3,(ö))] 

rt^/^C^Jtl + ^/^Cö))}]"1 [1 + {77»/TK6))}] ; (M,/M)<(l/3),  (22d) 

where use is made of Eqs. (15b), (17b) and (24). To ensure that the gain in reduction remains 

largely the same as stated in Eq. (24), Ss{(0) must be designed to be of the order of or less than 

unity, requiring, therefore, that [7]'s (0))/T/(O))] < 1. According to the preceding arguments, to 

satisfy such an inequality is a tall order indeed. A less drastic design criterion is to require that 
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[ri'o(C0)/7](C0)] be small compared with unity, leaving, thereby, [T]'s(CO)IT]((0)] to assume a 

natural value that is usually far in excess of unity [8]. In this case, Eq. (22d) yields 

[E0«D)IE°0(CO)\ -W0{co)lT]{(o)] ; [77;(co)/77(a))] « 1 ; 

Ws((0)l7](co)] » 1 . (22e) 

Clearly, in this design the reduction implied by [E0 (co) I E% {(0)\; as stated in Eq. (24b), is an 

over estimate of the reduction that is attained by the actual stored energy ratio [E0 (CO) I E° (ö))]; 

as stated in Eq. (22e). One recognizes that this over estimate could be significantly high [11]. 

Nonetheless, to end on a more positive note, it is quite remarkable that the analysis provides such 

simple and direct design criteria in which only rough estimates of the parameters and ratios of 

quantities are required. Moreover, assessments of these parameters and ratios are required 

largely on the basis as to which is greater than which. 
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Fig. 1.  Master oscillator coupled to a set of distributed satellite oscillators. The master 

oscillator is defined by the mass (M) and the stiffness (K) and the (n)th satellite oscillator by 

the mass (mn) and the stiffness (kn). Only the master oscillator is driven, by the external drive 

Pe((0), generating the response V0 (CO) in the master oscillator and the response Vn (ft)) in the 

(ri)th satellite oscillator. 
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Fig. 2.   The power ratio [TLes (ft)) I Tle (ft))]  =  £s (ft)) dissipated in the satellite oscillators 

in situ to the external input power Tle((d) into the mechanical system, as a function of the ratio 

[T]0 (ft)) / T}s (ft))]. (r]0) is the loss factor of the master oscillator in isolation and 77^ (ft)) is the 

corresponding contribution to the damping of the master oscillator due to the satellite oscillators 

in situ. 
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